114培訓網(wǎng)歡迎您來到全國python學習中心!

13289378727

全國統(tǒng)一學習專線 9:00-21:00

如何入門 Python 爬蟲

“入門”是良好的動機,但是可能作用緩慢。如果你手里或者腦子里有一個項目,那么實踐起來你會被目標驅(qū)動,而不會像學習模塊一樣慢慢學習。
另外如果說知識體系里的每一個知識點是圖里的點,依賴關系是邊的話,那么這個圖一定不是一個有向無環(huán)圖。因為學習A的經(jīng)驗可以幫助你學習B。因此,你不需要學習怎么樣“入門”,因為這樣的“入門”點根本不存在!你需要學習的是怎么樣做一個比較大的東西,在這個過程中,你會很快地學會需要學會的東西的。當然,你可以爭論說需要先懂python,不然怎么學會python做爬蟲呢?但是事實上,你完全可以在做這個爬蟲的過程中學習python :D看到前面很多答案都講的“術”——用什么軟件怎么爬,那我就講講“道”和“術”吧——爬蟲怎么工作以及怎么在python實現(xiàn)。
先長話短說總結(jié)一下。你需要學習:
基本的爬蟲工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大規(guī)模網(wǎng)頁抓取,你需要學習分布式爬蟲的概念。其實沒那么玄乎,你只要學會怎樣維護一個所有集群機器能夠有效分享的分布式隊列就好。最簡單的實現(xiàn)是python-rq: https: //github.com /nvie/rqrq和Scrapy的結(jié)合:darkrho/scrapy-redis · GitHub后續(xù)處理,網(wǎng)頁析取(grangier/python-goose · GitHub),存儲(Mongodb)以下是短話長說。說說當初寫的一個集群爬下整個豆瓣的經(jīng)驗吧。
1)首先你要明白爬蟲怎樣工作
想象你是一只蜘蛛,現(xiàn)在你被放到了互聯(lián)“網(wǎng)”上。那么,你需要把所有的網(wǎng)頁都看一遍。怎么辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。
在人民日報的首頁,你看到那個頁面引向的各種鏈接。于是你很開心地從爬到了“國內(nèi)新聞”那個頁面。太好了,這樣你就已經(jīng)爬完了倆頁面(首頁和國內(nèi)新聞)!暫且不用管爬下來的頁面怎么處理的,你就想象你把這個頁面完完整整抄成了個html放到了你身上。
突然你發(fā)現(xiàn), 在國內(nèi)新聞這個頁面上,有一個鏈接鏈回“首頁”。作為一只聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經(jīng)看過了啊。所以,你需要用你的腦子,存下你已經(jīng)看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經(jīng)去過這個頁面地址。如果去過,那就別去了。
好的,理論上如果所有的頁面可以從initial page達到的話,那么可以證明你一定可以爬完所有的網(wǎng)頁。
那么在python里怎么實現(xiàn)呢?很簡單:
Python
import Queue
initial_page = "http:/ /www. . com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到??菔癄€
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中*個的urlstore(current_url) #把這個url代表的網(wǎng)頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www. .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中*個的urlstore(current_url) #把這個url代表的網(wǎng)頁存儲好for next_url in extract_urls(current_url): #提取把這個url里鏈向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
寫得已經(jīng)很偽代碼了。
所有的爬蟲的backbone都在這里,下面分析一下為什么爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發(fā)。
2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內(nèi)容。更別說Google這樣的搜索引擎需要爬下全網(wǎng)的內(nèi)容了。
問題出在哪呢?需要爬的網(wǎng)頁實在太多太多了,而上面的代碼太慢太慢了。設想全網(wǎng)有N個網(wǎng)站,那么分析一下判重的復雜度就是N*log(N),因為所有網(wǎng)頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現(xiàn)是hash——不過這樣還是太慢了,至少內(nèi)存使用效率不高。
通常的判重做法是怎樣呢?Bloom Filter。簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內(nèi)存(不隨url的數(shù)量而增長)以O(1)的效率判定url是否已經(jīng)在set中??上煜聸]有白吃的午餐,它的*問題在于,如果這個url不在set中,BF可以*確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經(jīng)出現(xiàn)過,不過我有2%的不確定性。注意這里的不確定性在你分配的內(nèi)存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example注意到這個特點,url如果被看過,那么可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網(wǎng)頁了?。?。 [IMPORTANT: 此段有問題,請暫時略過]
好,現(xiàn)在已經(jīng)接近處理判重最快的方法了。另外一個瓶頸——你只有一臺機器。不管你的帶寬有多大,只要你的機器下載網(wǎng)頁的速度是瓶頸的話,那么你只有加快這個速度。用一臺機子不夠的話——用很多臺吧!當然,我們假設每臺機子都已經(jīng)進了*的效率——使用多線程(python的話,多進程吧)。
3)集群化抓取
爬取豆瓣的時候,我總共用了100多臺機器晝夜不停地運行了一個月。想象如果只用一臺機子你就得運行100個月了…那么,假設你現(xiàn)在有100臺機器可以用,怎么用python實現(xiàn)一個分布式的爬取算法呢?
我們把這100臺中的99臺運算能力較小的機器叫作slave,另外一臺較大的機器叫作master,那么回顧上面代碼中的url_queue,如果我們能把這個queue放到這臺master機器上,所有的slave都可以通過網(wǎng)絡跟master聯(lián)通,每當一個slave完成下載一個網(wǎng)頁,就向master請求一個新的網(wǎng)頁來抓取。而每次slave新抓到一個網(wǎng)頁,就把這個網(wǎng)頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現(xiàn)在master只發(fā)送確定沒有被訪問過的url給slave。Bloom Filter放到master的內(nèi)存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)考慮如何用python實現(xiàn):
在各臺slave上裝好scrapy,那么各臺機子就變成了一臺有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。
代碼于是寫成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
_queue = ()
bf = ()
initial_pages = "www. .com"
while(True):
if request == 'GET':
if _queue.size()>0:
send(_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
_queue = ()
bf = ()
initial_pages = "www. .com"
while(True):
if request == 'GET':
if _queue.size()>0:
send(_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其實你能想到,有人已經(jīng)給你寫好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后處理雖然上面用很多“簡單”,但是真正要實現(xiàn)一個商業(yè)規(guī)??捎玫呐老x并不是一件容易的事。上面的代碼用來爬一個整體的網(wǎng)站幾乎沒有太大的問題。
但是如果附加上你需要這些后續(xù)處理,比如
有效地存儲(數(shù)據(jù)庫應該怎樣安排)
有效地判重(這里指網(wǎng)頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)有效地信息抽取(比如怎么樣抽取出網(wǎng)頁上所有的地址抽取出來,“朝陽區(qū)奮進路*道”),搜索引擎通常不需要存儲所有的信息,比如圖片我存來干嘛…及時更新(預測這個網(wǎng)頁多久會更新一次)如你所想,這里每一個點都可以供很多研究者十數(shù)年的研究。雖然如此,“路漫漫其修遠兮,吾將上下而求索”。

python爬蟲入門教程

很簡單,三步,用爬蟲框架scrapy
1. 定義item類
2. 開發(fā)spider類
3. 開發(fā)pipeline
如果有不會的,可以看一看《瘋狂python講義》

Python 爬蟲的入門教程有哪些值得推薦的?

Python 爬蟲的入門教程有很多,以下是我推薦的幾本:
1.《Python 網(wǎng)絡爬蟲開發(fā)實戰(zhàn)》:這本書介紹了Python爬蟲的基本原理,以及如何使用Python編寫爬蟲程序,實現(xiàn)網(wǎng)絡爬蟲的功能。
2.《Python爬蟲技術實戰(zhàn)》:這本書介紹了Python爬蟲的基本原理,以及如何使用Python編寫爬蟲程序,實現(xiàn)網(wǎng)絡爬蟲的功能。
3.《Python爬蟲數(shù)據(jù)分析》:這本書介紹了如何分析爬取到的數(shù)據(jù),以及如何使用Python編寫爬蟲程序,實現(xiàn)網(wǎng)絡爬蟲的功能。
4.《Python爬蟲實戰(zhàn):深入理解Web抓取》:這本書介紹了如何使用Python編寫爬蟲程序,實現(xiàn)網(wǎng)絡爬蟲的功能,以及如何深入理解Web抓取。
5.《Python網(wǎng)絡爬蟲實戰(zhàn)》:這本書介紹了如何使用Python編寫爬蟲程序,實現(xiàn)網(wǎng)絡爬蟲的功能,以及如何解決爬蟲程序遇到的問題。
以上就是我推薦的幾本Python爬蟲的入門教程,可以幫助初學者快速掌握Python爬蟲的基本技術。

如何用最簡單的Python爬蟲采集整個網(wǎng)站

采集網(wǎng)站數(shù)據(jù)并不難,但是需要爬蟲有足夠的深度。我們創(chuàng)建一個爬蟲,遞歸地遍歷每個網(wǎng)站,只收集那些網(wǎng)站頁面上的數(shù)據(jù)。一般的比較費時間的網(wǎng)站采集方法從頂級頁面開始(一般是網(wǎng)站主頁),然后搜索頁面上的所有鏈接,形成列表,再去采集到的這些鏈接頁面,繼續(xù)采集每個頁面的鏈接形成新的列表,重復執(zhí)行。

溫馨提示:為不影響您的學業(yè),來校區(qū)前請先電話咨詢,方便我校安排相關的專業(yè)老師為您解答
相關資料
  • 作者最新文章
  • 在線報名
申請試聽課程

只要一個電話
我們免費為您回電

姓名不能為空
手機號格式錯誤