114培訓(xùn)網(wǎng)歡迎您來到大連IT教育!

17332948818

全國統(tǒng)一學(xué)習(xí)專線 9:00-21:00

大連大數(shù)據(jù)+人工智能培訓(xùn)課程

授課機構(gòu):大連IT教育

關(guān)注度:592

課程價格: 請咨詢客服

上課地址:請咨詢客服

開課時間:滾動開班

咨詢熱線:17332948818

在線報名

課程詳情在線報名

更新時間:2024-12-27


大連大數(shù)據(jù)分析培訓(xùn)哪家好
 
大連大數(shù)據(jù)分析培訓(xùn)哪家好?大連大數(shù)據(jù)分析培訓(xùn)機構(gòu)哪里好?推薦大連教育在大連學(xué)大數(shù)據(jù)分析推薦教育。教育大數(shù)據(jù)分析培訓(xùn)課程通過線上線下、直播錄播與平臺結(jié)合的方式,讓您在業(yè)務(wù)數(shù)據(jù)分析、計算機編程、數(shù)據(jù)挖掘/機器學(xué)習(xí)算法上獲得全面提升:從基礎(chǔ)的數(shù)據(jù)分析理論方法到需備的數(shù)據(jù)分析算法,再到流行的數(shù)據(jù)可視化技術(shù)以及基于Python的數(shù)據(jù)分析語言,直至?xí)r下熱門的大數(shù)據(jù)分析技術(shù)。


—— 大數(shù)據(jù)分析和數(shù)據(jù)分析師的含義——


  • 什么是大數(shù)據(jù)分析 icon

    隨著大數(shù)據(jù)(BIG DATA)時代的來臨,數(shù)據(jù)倉庫、數(shù)據(jù)安全、數(shù)據(jù)分析、數(shù)據(jù)挖掘等圍繞大數(shù)據(jù)的商業(yè)價值利用,逐漸成為企業(yè)和資本爭相追捧的焦點。商業(yè)大數(shù)據(jù)分析,是指通過技術(shù)和數(shù)據(jù)分析工具對規(guī)模巨大的商業(yè)數(shù)據(jù)進行多維度分析,洞悉用戶屬性特征和行為習(xí)慣,挖掘用戶個性化需求,預(yù)測業(yè)務(wù)狀況,改進決策流程,并通過自動化流程實現(xiàn)用戶交互。

  • 數(shù)據(jù)分析師含義 icon

    數(shù)據(jù)分析師是指專門從事數(shù)據(jù)搜集、整理、 分析,并依據(jù)數(shù)據(jù)做出行業(yè)研究、評估和預(yù)測的專業(yè)人員。阿里巴巴研究員薛貴榮曾表示,"數(shù)據(jù)分析師就是一群玩數(shù)據(jù)的人,玩出數(shù)據(jù)的商業(yè)價值,讓數(shù)據(jù)變成生產(chǎn)力。

01
學(xué)掌門

學(xué)掌門(Atstudy.com)是旗下的在線IT職業(yè)教育平臺,目前已推出眾多內(nèi)容優(yōu)質(zhì)、生動實用 的各類IT培訓(xùn)課程,利用在線學(xué)習(xí)的便捷性,著重加 強IT項目實戰(zhàn)技能,結(jié)合在線答疑、實時筆記、在線 題庫及考試等教學(xué)輔助功能,滿足學(xué)習(xí)者從零基礎(chǔ)起 步直至IT高級崗位的技能所需,以匹配個人提升或企 業(yè)用人需求。Atstudy個性化的教學(xué)和學(xué)習(xí)形式,有助 于實現(xiàn)真正意義上的因材施教效果。


02
教育

互聯(lián)科技有限公司(下面簡稱"教育"),成立于2011年1月,立足于職業(yè)教育培訓(xùn)領(lǐng)域,公司現(xiàn)有教育培訓(xùn)、高校服務(wù)、企業(yè)服務(wù)三大業(yè)務(wù)板塊。教育培訓(xùn)業(yè)務(wù)分為就業(yè)培訓(xùn)和職后技能培訓(xùn);高校服務(wù)業(yè)務(wù)主要提供校企合作全解決方案與定制服務(wù);企業(yè)服務(wù)業(yè)務(wù)主要為企業(yè)提供專業(yè)化綜合服務(wù)。公司總部位于北京,目前已在18個城市成立分公司,現(xiàn)有教研講師團隊300余人。



  • undefined
  • 大連數(shù)據(jù)分析培訓(xùn)就業(yè)
    大連數(shù)據(jù)分析培訓(xùn)就業(yè)班,該課程學(xué)員不論您是應(yīng)/往屆畢業(yè)生還是在職上班族,無論您是否計算機相關(guān)專業(yè)畢業(yè),參加學(xué)掌門【超全棧開發(fā)就業(yè)培 訓(xùn)】,我們都將幫您奠定堅實的職業(yè)基礎(chǔ),助您踏入發(fā)展前景廣闊的超全棧開發(fā)領(lǐng)域,加上持續(xù)不斷的努力,相信 您將得到更好的職位、更高的待遇、更快的晉升,直至實現(xiàn)您的夢想。


—— 大連大數(shù)據(jù)分析培訓(xùn)哪家好?教育的六大教學(xué)服務(wù) ——


教學(xué)定制 01
入學(xué)一對一能力評估,定制個人專屬學(xué)習(xí)方案
教學(xué)力量 02
講師均為各行業(yè)大咖、人士,技術(shù)過硬,講課生趣
教學(xué)平臺 03
支持手機端/PC端同步學(xué)習(xí),隨時隨地,學(xué)習(xí)方便快捷
教學(xué)實戰(zhàn) 04
注重實踐能力的培訓(xùn),演練多個企業(yè)級真實項目,切實提高學(xué)員的職場競爭力
教學(xué)模式 05
直播+錄播+作業(yè)打卡,支持錄播反復(fù)學(xué)習(xí),項目式、小組PK式多學(xué)習(xí)模式
教學(xué)方法 06
課前準備、課前復(fù)習(xí)、課程引入、課程講解、課程總結(jié)、課后測驗、課后作業(yè)
  • 新托福培訓(xùn)班配圖 專職班主任

    以陪伴式學(xué)習(xí)和精細化服務(wù)貫穿學(xué)習(xí)過程,解決學(xué)習(xí)過程中遇到的問題

  • 新托福課程配圖 技術(shù)導(dǎo)師

    課后作業(yè)疑問一對一文字+語音點評指導(dǎo),以及直播平臺+微信群全程答疑輔導(dǎo).

  • 新托福輔導(dǎo)班配圖 就業(yè)導(dǎo)師

    輔導(dǎo)學(xué)員進行自我展示和項目表達訓(xùn)練,一對一指導(dǎo)簡歷及模擬面試,推薦面試

  • 新托福學(xué)習(xí)班配圖 學(xué)業(yè)導(dǎo)師

    按照課程計劃及時提醒學(xué)員參加直播課程和完成課后作業(yè),以及每周反饋學(xué)習(xí)報告


—— 大連數(shù)據(jù)分析培訓(xùn)就業(yè)班課程大綱 ——

課程大綱課題名稱課程內(nèi)容
前導(dǎo)基礎(chǔ) 數(shù)據(jù)分析入門

1、數(shù)據(jù)分析入門 2、數(shù)據(jù)分析的意義

3、數(shù)據(jù)分析的流程控制 4、數(shù)據(jù)分析的思路與方法

邏輯為先—XMIND

1、xmind簡介與基本使用 2、學(xué)習(xí)方法課堂案例

3、滴答拼車實戰(zhàn)演練 4、其他思維導(dǎo)圖介紹

專業(yè)展現(xiàn)—PPT

1、專業(yè)展現(xiàn)——PPT 2、基本簡介

3、幾個不得不說的真相 4、經(jīng)驗分享

5、實戰(zhàn)動畫

數(shù)據(jù)分析工具安裝與環(huán)璄配置

1、Excel工具的安裝、配置與環(huán)璄測試

2、Power BI工具的安裝、配置與環(huán)璄測試

3、Tableau工具的安裝、配置與環(huán)璄測試

4、MySQL數(shù)據(jù)庫的安裝、配置與環(huán)璄測試

5、SPSS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測試

6、SAS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測試

7、Python開發(fā)工具的安裝、配置與開發(fā)環(huán)璄測試

Linux基礎(chǔ)應(yīng)用之大數(shù)據(jù)必知必會

1、虛擬機的安裝配置 2、虛擬機網(wǎng)絡(luò)配置

3、安裝Linux 4、利用SSH連結(jié)Linux

5、Linux基礎(chǔ)命令 6、Linux系統(tǒng)管理

數(shù)據(jù)分析的Python語言基礎(chǔ)

1、python課程的目的 2、使用JupyterLab

3、python數(shù)據(jù)類型 4、元組、列表、字典

5、python分支結(jié)構(gòu) 6、python字符串處理+隨機函數(shù)

7、pthon循環(huán)結(jié)構(gòu) 8、python面向過程函數(shù)操作

9、python面向?qū)ο?/p>

問題定義與數(shù)據(jù)獲取 數(shù)據(jù)分析項目流程

1、問題界定 2、問題拆分 3、指標確定

4、數(shù)據(jù)收集 5、報告方案 6、趨勢預(yù)測

7、數(shù)據(jù)分析 8、趨勢預(yù)測 9、報告方案

問題的定義

1、邊界:明確問題的邊界

2、邏輯:確定業(yè)務(wù)的關(guān)鍵指標和邏輯

3、定性分析與定量分析

分析問題的模型

基于經(jīng)典的模型

1、5W2H

2、SWORT

3、4P管理模型

4、CATWOE

5、STAR原則、波士頓5力模型

基于業(yè)務(wù)的模型

1、用戶畫像

2、 銷售影響因素

3、市場變化因素

4、AARRR流量模型

5、金定塔思考方法

數(shù)據(jù)清洗與處理

1、數(shù)據(jù)科學(xué)過程 2、數(shù)據(jù)清洗定義

3、數(shù)據(jù)清洗任務(wù) 4、數(shù)據(jù)清洗流程

5、數(shù)據(jù)清洗環(huán)境 6、數(shù)據(jù)清洗實例說明

7、數(shù)據(jù)標準化 8、數(shù)據(jù)格式與編碼

9、數(shù)據(jù)清洗常用工具 10、數(shù)據(jù)清洗基本技術(shù)方法

11、數(shù)據(jù)抽取 12、數(shù)據(jù)轉(zhuǎn)換與加載

內(nèi)部數(shù)據(jù)的獲取

1、產(chǎn)品數(shù)據(jù) 2、用戶數(shù)據(jù)

3、行為數(shù)據(jù) 4、訂單數(shù)據(jù)

外部公開數(shù)據(jù)

1、開放網(wǎng)站 2、政務(wù)公開數(shù)據(jù)

3、數(shù)據(jù)科學(xué)競賽 4、數(shù)據(jù)交易平臺

5、行業(yè)報告 6、指數(shù)平臺

Web網(wǎng)站數(shù)據(jù)抓取

1、財經(jīng)數(shù)據(jù)抓取 2、投資數(shù)據(jù)抓取

3、房產(chǎn)數(shù)據(jù)抓取 4、輿情數(shù)據(jù)抓取

5、娛樂數(shù)據(jù)抓取 6、新媒體數(shù)據(jù)抓取

數(shù)據(jù)查詢與提取 SQL基礎(chǔ)操作

1、建庫 2、建表

3、建約束 4、創(chuàng)建索引

5、添加、刪除、修改數(shù)據(jù)

利用SQL完成數(shù)據(jù)的預(yù)處理

1、缺失值處理:對缺失數(shù)據(jù)行進行刪除或填充

2、重復(fù)值處理:重復(fù)值的判斷與刪除

3、異常值處理:清除不必要的空格和異常數(shù)據(jù)

利用SQL進行業(yè)務(wù)數(shù)據(jù)查詢

1、利用SQL進行簡單的業(yè)務(wù)數(shù)據(jù)查詢

2、利用SQL完成復(fù)雜條件查詢

3、利用多表關(guān)聯(lián)完成復(fù)雜業(yè)務(wù)查詢

4、利用嵌套子查詢完成復(fù)雜業(yè)務(wù)數(shù)據(jù)分析

高級SQL分析

1、聚合、分組、排序 2、函數(shù)

3、行列轉(zhuǎn)換 4、視圖與存儲過程

業(yè)務(wù)指標統(tǒng)計分析

1、業(yè)務(wù)數(shù)據(jù)表關(guān)聯(lián)查詢及查詢

2、結(jié)果縱向融合

3、?常業(yè)務(wù)需求數(shù)據(jù)寬表構(gòu)建

4、應(yīng)??查詢處理復(fù)雜業(yè)務(wù)

數(shù)理統(tǒng)計基礎(chǔ) 數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ)

1、計算和連續(xù)函數(shù)的性質(zhì) 2、導(dǎo)數(shù)/微分的概念和運算法則

3、積分的概念和運算法則

4、冪級數(shù)、泰勒級數(shù)、傅里葉級數(shù)、傅里葉變換

5、向量的概念和運算

6、矩陣的轉(zhuǎn)置、乘法、逆矩陣、正交矩陣、SVD奇異值分解、特征值

7、行列式的計算和性質(zhì) 8、凸優(yōu)化

Python數(shù)據(jù)分析 基于Numpy庫的Python數(shù)據(jù)科學(xué)計算

1、創(chuàng)建數(shù)組 2、切片索引

3、數(shù)組操作 4、字符串函數(shù)

5、數(shù)學(xué)函數(shù) 6、統(tǒng)計函數(shù)

基于Pandas庫的Python數(shù)據(jù)處理與分析

1、直方圖:探索變量的分布規(guī)律 2、條形圖:展示數(shù)值變量的集中趨勢

3、散點圖:表示整體數(shù)據(jù)的分布規(guī)律 4、箱線圖:表示數(shù)據(jù)分散性,中位數(shù)

5、提琴圖:分位數(shù)的位置及數(shù)據(jù)密度 6、回歸圖:尋找數(shù)據(jù)之間的線性關(guān)系

7、熱力圖:表未數(shù)值的大小或者相關(guān)性的高低

大數(shù)據(jù)分析 HIVE大數(shù)據(jù)查詢平臺搭建

1、大數(shù)據(jù)概述

2、?數(shù)據(jù)集群 Hadoop 架構(gòu)

3、Hive開發(fā)環(huán)璄搭建

HIVE與MySQL進行數(shù)據(jù)交換

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、Hive數(shù)倉

2、HQL 數(shù)據(jù)查詢基礎(chǔ)語法

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL業(yè)務(wù)數(shù)據(jù)指標統(tǒng)計分析

1、分區(qū)表 2、分桶表

3、關(guān)聯(lián)表 4、數(shù)據(jù)查詢

HQL海量數(shù)據(jù)查詢優(yōu)化

1、常?內(nèi)置函數(shù)及開窗函數(shù)

2、特殊類型數(shù)組查詢?式

3、HQL 查詢語句優(yōu)化技巧

建模與數(shù)據(jù)挖掘 數(shù)據(jù)挖掘與分析算法

1、描述統(tǒng)計 2、相關(guān)分析

3、判別分析 4、方差分析

5、時間序列分析 6、主成分分析

7、信度分析 8、因子分析

9、回歸分析 10、對應(yīng)分析

11、列聯(lián)表分析 12、聚類分析

數(shù)據(jù)挖掘工具SPSS

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、課程規(guī)劃與簡介 2、數(shù)據(jù)挖掘項目生命周期

3、簡單的統(tǒng)計學(xué)基礎(chǔ) 4、用Modeler試手挖掘流程

5、數(shù)據(jù)挖掘的知識類型 6、商業(yè)分析基礎(chǔ)簡介

7、信度分析 8、因子分析 9、回歸分析 10、對應(yīng)分析

11、列聯(lián)表分析 12、聚類分析

數(shù)據(jù)挖掘工具SAS

1、SAS概述:SAS簡介與教育版安裝 2、SAS概述:教育版基本使用

3、SAS編程基礎(chǔ) 4、SAS編程基礎(chǔ)7-循環(huán)

5、SAS數(shù)據(jù)集操作1-合并 6、SAS數(shù)據(jù)集操作2-排序與對比

7、SAS數(shù)據(jù)集操作3-查重與篩選 8、練習(xí)-斐波那契數(shù)列

9、練習(xí)-百元百雞問題

人工智能預(yù)測算法 人工智能實戰(zhàn)預(yù)測數(shù)據(jù)算法

1、機器學(xué)習(xí)入門 2、sk-learn機器學(xué)習(xí)庫

3、預(yù)測算法原理與使用場景 4、算法調(diào)用、參數(shù)設(shè)置

5、特征選擇、特征工程 6、回歸預(yù)測模型實戰(zhàn)

7. 分類預(yù)測試模型實戰(zhàn) 8. 聚類模型實戰(zhàn)

9、集成學(xué)習(xí) 10、模型優(yōu)化

可視化商業(yè)報告撰寫 商業(yè)智能與可視化分析實戰(zhàn)

案例-1:BI電商數(shù)據(jù)市場分析項目實戰(zhàn)

案例-2:BI電商數(shù)據(jù)客戶分析項目實戰(zhàn)

案例-3:BI可視化關(guān)于公司運營情況的相關(guān)分析

案例-4:基于Tableau的客戶主題對客戶進行合理分群

案例-5:基于Tableau的營銷主題分析如何衡量媒體的營銷價值

案例-6:基于Tableau的保公司索賠情況分析

數(shù)據(jù)可視化報告撰寫

1、數(shù)據(jù)可視化的概念 2、 數(shù)據(jù)可視化的意義

3、 數(shù)據(jù)可視化的對比 4、 數(shù)據(jù)可視化的分類

5、數(shù)據(jù)可視化圖表舉例 6、 數(shù)據(jù)可視化應(yīng)用領(lǐng)域

7、數(shù)據(jù)可視化步驟 8、 數(shù)據(jù)可視化工具梯度

9、圖表呈現(xiàn)流程 10、數(shù)據(jù)報告撰寫

實戰(zhàn):O2O電商平臺功能優(yōu)化效果評估及可視化數(shù)據(jù)分析報告撰寫

1、了解電商業(yè)務(wù)背景

2、以客戶分析為應(yīng)用場景,對數(shù)據(jù)進行加載、清洗、分析及模型建立

3、以貨品分析為應(yīng)用場景,針對品類銷售及商品銷售進行分析

4、以流量分析為應(yīng)用場景,針對流量渠道及關(guān)鍵詞做有效分析

5、根據(jù)業(yè)務(wù)實際背景做輿情分析

6、將分析結(jié)果及建議制成報告進行發(fā)布

商業(yè)分析項目實戰(zhàn) 商業(yè)項目實戰(zhàn)

商業(yè)項目實戰(zhàn)01:電商數(shù)據(jù)分析——分析方式之漏斗模型及數(shù)據(jù)量化

商業(yè)項目實戰(zhàn)02:電商用戶行為與營銷模型實戰(zhàn)

商業(yè)項目實戰(zhàn)03:金融風(fēng)控模型的構(gòu)建與分析實戰(zhàn)

商業(yè)項目實戰(zhàn)04:展會電話邀約項目數(shù)據(jù)分析實戰(zhàn)

商業(yè)項目實戰(zhàn)05:零售行業(yè)數(shù)據(jù)分析



姓名不能為空
手機號格式錯誤